An extended finite element/level set method to study surface effects on the mechanical behavior and properties of nanomaterials

نویسندگان

  • Mehdi Farsad
  • Franck J. Vernerey
  • Harold S. Park
چکیده

We present a new approach based on coupling the extended finite element method (XFEM) and level sets to study surface and interface effects on the mechanical behavior of nanostructures. The coupled XFEM-level set approach enables a continuum solution to nanomechanical boundary value problems in which discontinuities in both strain and displacement due to surfaces and interfaces are easily handled, while simultaneously accounting for critical nanoscale surface effects, including surface energy, stress, elasticity and interface decohesion. We validate the proposed approach by studying the surface-stressdriven relaxation of homogeneous and bi-layer nanoplates as well as the contribution from the surface elasticity to the effective stiffness of nanobeams. For each case, we compare the numerical results with new analytical solutions that we have derived for these simple problems; for the problem involving the surface-stress-driven relaxation of a homogeneous nanoplate, we further validate the proposed approach by comparing the results with those obtained from both fully atomistic simulations and previous multiscale calculations based upon the surface Cauchy–Born model. These numerical results show that the proposed method can be used to gain critical insights into how surface effects impact the mechanical behavior and properties of homogeneous and composite nanobeams under generalized mechanical deformation. Copyright 2010 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Newmark Method Parameters on Errors in Dynamic Extended Finite Element Method Using Response Surface Method

The Newmark method is an effective method for numerical time integration in dynamic problems. The results of Newmark method are function of its parameters (β, γ and ∆t). In this paper, a stationary mode I dynamic crack problem is coded in extended finite element method )XFEM( framework in Matlab software and results are verified with analytical solution. This paper focuses on effects of main pa...

متن کامل

Extended Finite Element Method for Statics and Vibration Analyses on Cracked Bars and Beams

In this paper, the extended finite element method (XFEM) is employed to investigate the statics and vibration problems of cracked isotropic bars and beams. Three kinds of elements namely the standard, the blended and the enriched elements are utilized to discretize the structure and model cracks. Two techniques referred as the increase of the number of Gauss integration points and the rectangle...

متن کامل

Buckling Analysis of Rectangular Functionally Graded Plates with an Elliptic Hole Under Thermal Loads

This paper presents thermal buckling analysis of rectangular functionally graded plates (FG plates) with an eccentrically located elliptic cutout. The plate governing equations derived by the first order shear deformation theory (FSDT) and finite element formulation is developed to analyze the plate behavior subjected to a uniform temperature rise across plate thickness. It is assumed that the ...

متن کامل

Size-dependent free vibration analysis of rectangular nanoplates with the consideration of surface effects using finite difference method

In this article, finite difference method (FDM) is used to study the size-dependent free vibration characteristics of rectangular nanoplates considering the surface stress effects. To include the surface effects in the equations, Gurtin-Murdoch continuum elasticity approach has been employed. The effects of surface properties including the surface elasticity, surface residual stress and surface...

متن کامل

Estimation of Fracture path in the Structures and the Influences of Non-singular term on crack propagation

In the present research, a fully Automatic crack propagation as one of the most complicated issues in fracture mechanics is studied whether there is an inclusion or no inclusion in the structures. In this study The Extended Finite Element Method (XFEM) is utilized because of several drawbacks in standard finite element method in crack propagation modeling. Estimated Crack paths are obtained by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010